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Abstract. Automatic screening of Age-related Macular Degeneration
(AMD) is important for both patients and ophthalmologists. The ma-
jor sign of contracting AMD at the early stage is the appearance of
drusen, which are the accumulation of extracellular material and appear
as yellow-white spots on the retina. In this paper, we propose an effective
approach for drusen segmentation towards AMD screening. The major
novelty of the proposed approach is that it employs an effective way to
train a drusen classifier from a weakly labeled dataset, meaning only
the existence of drusen is known but not the exact locations or bound-
aries. We achieve this by employing Multiple Instance Learning (MIL).
Moreover, our proposed approach also tracks the drusen boundaries by
using Growcut, with the output of MIL as initial seeds. Experiments
on 350 fundus images with 96 of them with AMD demonstrates that
our approach outperforms the state-of-the-art methods on the task of
early AMD detection and achieves satisfying performance on the task of
drusen segmentation.

1 Introduction

Age-related Macular Degeneration (AMD), after cataract and glaucoma, is the
third leading cause of blindness worldwide and the first leading cause in the
elderly [1] [2]. It is a kind of maculopothy that usually affects older adults and
results in a loss of vision in the center of the visual field. Approximately 10%
of patients 66 to 74 years of age will have findings of macular degeneration.
The prevalence increases to 30% in patients 75 to 85 years of age. According to
the statistical data of World Health Organization, till 2010, there were nearly 2
million occurrences of AMD in the United States. The number is projected to
be over 5 million in 2050 (http://www.who.int/research/en/).

Population based AMD screening is in necessity for its increasing prevalence.
However, symptoms (e.g., vision scotoma and distortion) at the early stage of
AMD are generally not obvious to be observed. So it is usually late when patients
are found out to have contracted AMD. As a result of that, the vision of those
patients may be permanently lost. Therefore, it is of great importance to detect
AMD at the early stage, and patients can thus take treatment to prevent it from
getting worse. For the patients already diagnosed with AMD, accurate grading
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Fig. 1. Examples of fundus images with and without drusen. (a) A healthy fundus
image. (b) A fundus image with sparse drusen. (c) A fundus image with clumped
drusen, of poor image quality.

is important to customize a suitable treating strategy. Regular screening is a
potential way to detect early AMD and grade AMD. However, manual detection
and grading of AMD are time consuming and labor intensive. More importantly,
because the grading is usually subjective (graded by human clinicians), a certain
degree of inaccuracy may be introduced.

Automatic AMD screening brings profits for both patients and ophthalmolo-
gists, hence it has attracted much research effort in these years. The major sign
of early AMD is the appearance of drusen [3][4]. Drusen appear as yellow-white
spot on digital fundus image, which is the mainstream and most popular imaging
modality for AMD diagnosis. Examples of drusen are shown in Figure 1 (b) and
(c). Drusen detection has significant importance for early AMD detection, while
drusen segmentation is important for AMD grading. Here we refer to drusen
detection as identifying the existence of drusen in a fundus image, while drusen
segmentation as finding the location and boundary of drusen.

In this paper, we propose a novel method which is not only able to detect
early AMD but also segment drusen at the same time. The flowchart of the
proposed method is shown in Figure 2. Our method first extracts local extreme
points, i.e., maximum points and minimum points, in scale space. The maximum
points are considered as potential drusen candidates. Edge Direction Histogram
(EDH), SPIN feature, Gabor coefficients, intensity, position, and contrast are
extracted at these maximum points. Then Multiple Instance Learning (MIL) is
used to train a classifier from the weakly labeled data to classify each maximum
points as drusen or non-drusen [5]. For a fundus image, if drusen are detected,
it will be classified as early AMD. Finally, if drusen are detected, Growcut is
employed to segment drusen [6]. The maximum points classified as drusen are
used as foreground seeds. The ones classified as non-drusen, together with the
minimum points, are used as background seeds. These seeds are fed into Growcut
to get boundaries of drusen.

The contribution of this paper is that we propose an effective approach of
drusen segmentation for AMD screening. The major contributions of this ap-



Effective Drusen Segmentation from Fundus Images for AMD Screening 3

Fig. 2. The flowchart of the proposed method.

proach are as follows. 1) It is not only able to detect AMD but also to track
the locations and boundaries of drusen for further AMD grading. 2) It employs
Multiple Instance Learning (MIL) to train the detectors from a weakly labeled
dataset thus significantly reduces the need for manual labeling. 3) It employs
Growcut to track the boundaries of drusen, by using the output of MIL as initial
seeds.

In the rest of this paper, we will review the state-of-the-art methods in Section
2. Then we will detail in Section 3 the proposed drusen segmentation approach,
including extreme points detection, feature descriptors, classification using MIL,
and segmentation using Growcut. In Section 4, we will show the experimental re-
sults on both AMD detection and drusen segmentation. Finally, we will conclude
this paper with future work in Section 5.
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2 Related work

For the importance of automatic AMD screening, in recent years, lots of methods
have been proposed for drusen segmentation and AMD detection. The existing
drusen segmentation methods can be classified into three major categories. The
first category, consisting of the earliest drusen segmentation methods, is based
on local maxima, e.g., the geodesic method [7]. These methods first detect local
maxima, then further classify the candidates according to contrast, size and
shape. The second category consists of the local threshold based methods, e.g.,
Histogram based Adaptive Local Thresholding (HALT) [8], and Otsu method
based adaptive threshold [9]. The third category includes the ones from frequency
domain, e.g., wavelet [10], Fourier transform [11], and amplitude-modulation
frequency modulation (AM-FM) [12].

There are some other methods, e.g., background modeling method [13] and
saliency based method [11]. The background modeling method first segments
the healthy structure of eye and blood vessels. The inverse of the healthy parts
provide the drusen detection result. The saliency based method first detects the
salient regions then classifies them as blood vessel, hard exudates or drusen. In
[14], a general framework is proposed to detect and characterize target lesions
almost instantaneously. Within the framework, a feature space, including the
confounders of both true positive (e.g., dursen near to other drusen) and false
positive samples (e.g., blood vessels), is automatically derived from a set of
reference image samples. Then Haar filter is used to build the transformation
space and PCA is used to generate the optimal filter.

The performance of drusen segmentation based AMD detection methods is
restricted by the accuracy of drusen segmentation. To bypass drusen segmen-
tation, in recent years, researchers have started to seek for methods detecting
AMD directly from fundus images, without drusen segmentation. These methods
describe an image with locally extracted features, where the features are fed into
a classifier to decide whether the image contains drusen or not. An early attempt
in this direction was a histogram based representation followed by Case-Based
Reasoning [15]. Good results were produced, however observations indicated that
relying on the retinal image colour distribution alone was not sufficient. Thus,
the authors further proposed a method by using a spatial histogram technique
to include colour and spatial information [16]. The latest work from the same
team comprises a hierarchical image decomposition mechanism, founded on ei-
ther a circular and angular partitioning or a pyramid partitioning. The resulting
decomposition is then stored in a tree structure to which a weighted frequent sub-
tree mining algorithm is applied. The identified sub-graphs are then incorporated
into a feature vector representation (one vector per image) to which classification
techniques can be applied [17][18]. The latest methods in this category include
Biologically Inspired Feature (BIF) based method [19] and Hierarchical Word
Image representation and SPIN features based method named Thalia [20].

Although the methods detecting AMD without drusen segmentation show
some progress, drusen segmentation has its importance in AMD grading. The
severity of AMD is usually measured according to position, size, type (hard or
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soft), together with geographic atrophy and other symptoms. The overlap of
drusen with macula is used to measure the severity of AMD [21] [22].

3 The proposed method

As shown in Figure 1, drusen appear as yellow-white spots on fundus images.
The visual properties that discriminate drusen from the other structures of retina
are summarized as follows, together with the corresponding strategy adopted to
describe the property.

1. Drusen appear brighter than the healthy part, except the optical disk, of
the retina (Figure 1). However, the light on the fundus image is not uniform
thus drusen are not globally brighter. We detect local maximum points as
drusen candidates and use contrast as a feature for classification.

2. Drusen don’t have exact size thus we extract local maxima at multiple scales
to detect drusen of different sizes.

3. Drusen are near round spots. Shape distinguishes drusen from the regions
near vessels which are likely to be detected as drusen but drusen don’t have
rigid shape (Figure 1 (b) and (c)). We adopt edge direction histogram to
describe shape and adopt SPIN feature to describe the color-spatial structure
of drusen.

4. Drusen may appear differently due to different imaging conditions (Figure 1
(c)). Thus we adopt local texture, which is more robust to lighting condition
than color. Gabor coefficients are used for this purpose.

The above detected and described maximum points are fed into multiple
instance learning to train a classifier, which is used for drusen classification.

Tracking drusen boundaries is facing two difficulties. First, drusen have two
types, hard drusen and soft drusen. Soft drusen usually don’t have sharp bound-
ary thus result in the difficulty to obtain the boundary. Second, in severe condi-
tion, drusen may clump together thus increase the difficulty of drusen segmenta-
tion. Figure 1 (c) shows an example of soft and clumped drusen. To address these
difficulties, we employ Growcut, with the detected drusen position as seeds, to
track drusen boundaries.

The flowchart of the proposed approach is shown in Figure 2. The details of
the methods are stated in the rest of this section.

3.1 Extremum points detection

Like SIFT[23], we detect local extrema in the scale space. We first construct
the Gaussian space of the image. At each level, the image is convolved with a
Gaussian function,

L(i, j, σk) = G(i, j, σk) ∗ I(i, j), (1)

where I is the input image, (i, j) is the position in the image, G(i, j, σk) is
a Gaussian function with standard variance of σk, and ∗ is the convolution
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operator. Then from the Gaussian space,we construct the Laplacian space as
follow,

D(i, j, σk) = (G(i, j, σk)−G(i, j, σk+1)) ∗ I(i, j)
= L(i, j, σk)− L(i, j, σk+1),

(2)

The Laplacian space has one less level than the Gaussian Space. We adopt σ =√
2
{−1,0,1,...,12}

. A pixel is determined to be a maximum if it is a local maximum
in the Laplacian space. The local window used to determine the maximum is

3× 3× 3. Thus, we detect maximum points at scales σ =
√
2
{0,1,...,10}

.

In Equation (2), D(i, j, σ) = 0 when i2 + j2 = 2a2σ2 log(a2)
a2−1 . Here a = σk+1

σk
.

When a =
√
2, the radius of detected drusen at scale σ is r = 1.67σ. Thus

the minimal and maximal diameters of detected drusen are 3 and 108 pixels
respectively. Figure 2 (the top left block) illustrates an example of detected
extreme points.

3.2 Feature description

The characteristics distinguishing drusen from the background are intensity,
shape, size, contrast and texture. Further, drusen usually distribute around mac-
ula. The following features are adopted to describe these characteristics.

Edge Direction Histogram is used to describe the shape of the local max-
ima at the corresponding scale. The histogram is weighted by the gradient mag-
nitude and the Gaussian function. The edge direction histogram of a maximum
point is

H(i, j, o, σ) =
∑

(i′,j′)∈I,O(i′,j′,σ)=o

M(i′, j′, σ)×G(i′, j′, σ) (3)

where O(i, j, σ) and M(i, j, σ) are respectively the orientation and magnitude of
gradient at position (i, j) and scale σ. In our experiment, the number of bins of
the histogram is set as 8.

Intensity. Drusen are bright spots on the fundus thus intensity is an use-
ful visual descriptor of drusen. We adopt intensity at the Gaussian space at
corresponding scale instead of the original image for better robustness.

Contrast. Drusen are locally brighter than neighbors thus contrast is an
important indicator of drusen. The value of each maximum at the Laplacian
space is used as contrast.

Size. The size of drusen is in general different compared to the optic disc
and vessels. In our method, the scales of the maxima are used to indicate size.

Hessian. In SIFT, the ratio of the maximum and minimum eigen values of
the Hessian matrix is used to discriminate edge and spot. We adopt this value
to distinguish blood vessels and drusen.

Distance to macula. Drusen usually appear near the macula. Furthermore,
the drusen nearer to the macula are more clinically important than the ones
farther away. Therefore, spatial distance to macula is used as a feature for drusen
classification.
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Gabor coefficients. Gabor coefficients at 5 scales and 8 orientations are
used as features to describe the local texture.

SPIN feature. Drusen typically appear as circular, roundish spots in the
retina. To make use of this characteristic, SPIN features is used to embed local
neighborhood context [24]. The SPIN feature encodes the distribution of image
brightness values in the neighborhood of a particular reference (center) point.
This is achieved by a soft-assigned histogram of the intensity values of pixels
located at a distance d from the pixel (i, j). That is,

f(i,j)(d, v) =
∑

(i′,j′)∈Γ (i,j)

exp

(
− (∥(i′, j′)− (i, j)∥ − d)2

2α2
− ∥I(i′, j′)− v∥2

2β2

)
(4)

here ∥.∥ means Euclid distance. Γ (i, j) is the neighborhood of (i, j). v is the
gray value of the pixels. α and β are the parameters representing the soft width
of the bins. In our implementation, the number of color bins is 8. The number
of location bins and the scales are consistent with he ones used for extrema
detection.

3.3 Classification by MIL

After detecting the local maxima, we adopt multiple instance learning to train
a drusen detector [5]. MIL is a good choice for weakly labeled data. For MIL,
each bag of samples share a label. A bag is labelled as positive if at least one
sample in it is positive, conversely it is labelled as negative if all the samples in it
are negative. It has been used in object detection and image categorization with
good performance [25]. For drusen detection, labelling the presence of drusen
is much easier than marking the boundary of drusen. Therefore, we employ
multiple instance learning to train a drusen classifier from the weakly labeled
data. The mi-SVM algorithm [26] is used in our work. This algorithm formulates
multiple instance learning as a maximum margin problem which can be solved
by an extension of the generalized Support Vector Machines (SVM).

In mi-SVM, each instance label is subjected to constraints defined by the
(positive) bag labels. This is to ensure label consistency with the bag label.
The goal is then to maximize the soft-margin jointly over hidden label variables
and a kernelized discriminant function. The mixed integer objective function
formulation of mi-SVM as a generalized soft-margin SVM in its primal form is
defined as:

min
{yi}

min
w,b,ξ

1

2
∥w∥2 + C

∑
i

ξi,

s.t.



∀i : yi(⟨w, xi⟩+ b) ≥ 1− ξi,

ξi ≥ 0,

yi ∈ {−1, 1},
∀I :

∑
i∈I

yi+1
2 ≥ 1, if Y I = 1

yi = −1|i∈I , if Y I = −1.

(5)
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where w ∈ Rd, b ∈ R, ξ are the weight vector, offset and slack variables of SVM.

As yi is a discrete variable, solving the mi-SVM problem to find the optimal
labels and hyperplane, is a combinatorial mixed integer programming problem.
The heuristic quadratic programming (QP) scheme proposed by [26] to optimize
this objective function begins by initializing all instance labels from the positive
labeled bags to be 1 and alternates between optimizing the parameters w and b
for the SVM solution with the current imputed labels, and assigning y based on
the resulting classification boundary. After each step, the constraints in Equation
5 are checked and re-enforced.

3.4 Segmentation by Growcut

After classification, we obtain the locations of drusen, without boundary. We
employ Growcut to track the drusen boundary. While local threshold and region
grow methods are employed in other works, we found that local threshold method
fails in the situation of clumped drusen and region grow has the problem of
leaking. Growcut is able to track the boundary with small number of seeds [6].
It was verified to be effective in medical image segmentation.

Growcut is a celluar automata based image segmentation method. A cellular
automaton is a triplet A = (S,N, δ), where S is an non-empty state set, N is the
neighbor hood system, and δ : SN → S is the local transition function (rule).
This function defines the rule of calculating the cell’s state at t + 1 time step,
given the states of the neighborhood cells at previous time step t. The cell state

Sp in our case is actually a triplet (lp, θp,
−→
C p) - the label lp of the current cell,

’strength’ of the current cell θp ∈ [0, 1], and cell feature vector
−→
C p, defined by

the image (the RGB color vector). Growcut is an iterative method. At each step,
the seeds attack their neighbors until all the pixels are labeled.

Growcut was designed as an interactive foreground segmentation algorithm,
with users manually mark several foreground seeds and background seeds. In
[27], unsupervised Growcut, with random seeds and labels, is used for medical
image segmentation. We apply it in a supervised mode, with the seeds and labels
determined in the classification process.

While detecting the extremum points, the minimum points are almost all
non-drusen. Among the maximum points, some (most) of them are non-drusen
and classified correctly as non-drusen. These points are then used as background
seeds. and the points classified as drusen are used as foreground seeds. These
seeds are fed into Growcut to track the boundary of drusen [6]. An example of
Growcut seeds and segmentation result can be found in Figure 2.

While labeling, we found that if the whole image is labelled at one time,
Growcut is not able to give satisfying result. Therefore, for each drusen seed, we
perform Growcut on the local rectangle patch, which is the minimum bounding
box covering the drusen seeds and at least 5 non-drusen seeds.
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4 Experiments

The experiments are performed on ACHIKO-D350 [28], which is, as far as
we know, the only dataset with drusen boundaries marked. It consists of 350
population-based images from the Singapore Eye Malay Study, consisting of 96
clinically verified drusen images and 254 non-drusen images. Each image has
a resolution of 3072x2048 and had been acquired using a 45 FOV Canon CR-
DGi retinal fundus camera with a 10D SLR backing. Among the 96 images, 45
ones of left eyes and 51 ones of right eyes. The boundary of drusen are semi-
manually marked out. Besides drusen boundaries, the position of the macula is
also manually marked. In experiments, the images are resized to 1024*683.

The measurements adopted in experiments include sensitivity, specificity, av-
erage precision (the average of sensitivity and specificity), and the Area Under
Curve (AUC) of the Receiver Operating Characteristic (ROC). Sensitivity (true
positive rate) and specificity (true negative rate) are defined in Eq. 6.

Sensitivity =
True positives

Positives
,

specificity =
True negatives

Negatives
.

(6)

Receiver operating characteristic is the true positive rate (sensitivity) vs. false
positive rate (1-specificity) curve.

4.1 Computing time

In our method, the drusen classifier using MIL is trained off-line. After train-
ing the classifier, our workflow consists of four main steps: i) extreme point
detection; ii) feature description; iii) multiple instance learning; and iv) drusen
segmentation using growcut. We recorded the computational time of each step
for processing one image of 1024*768 as follows: 14s, 7s, 1.5s, and 10s for i), ii),
iii) and iv), respectively. So, the total time for one image is 32.5 seconds. Note
that our method is implemented with unoptimized MATLAB code on a work-
station with 2.4GHz dual CPU and 64GB memory. The time cost can be largely
reduced by optimizing the code and using an upgraded server, which easily make
our method acceptable for clinical application.

4.2 Feature selection

The features used in our work are of four types, Edge Direction Histogram
(EDH), Macula Related Feature (MRF, consists of distance to macula, scale,
intensity, contrast, and Hessian value), Gabor, and SPIN. The performances
of the single features are shown in Table 1. From the result, we can see that 1)
EDH and macula related feature are able to provide higher sensitivity with lower
specificity and 2) in means of average precision, macula related feature gives the
best performance.
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Table 1. Performance of single features

Feature Sensitivity Specificity Avg precision

EDH 80.44 55.61 68.03

MRF 90.06 75.79 82.93

Gabor 76.75 82.7 79.72

SPIN 82.67 78.86 80.76

The combination of all four types of features is used in our paper, because
it gives better performance than any other forms of combinations, as shown in
Table 2. We can see that the result is consistent with the one in Table 1.

Table 2. Performance of feature combinations

Feature combination Sensitivity Specificity Avg precision

MRF+EDH+Gabor+SPIN 90.62 86.86 88.74

- MRF 84.84 85.17 85

- EDH 90.59 86.87 88.73

- Gabor 90.92 83.24 87.08

- SPIN 88.43 86.03 87.23

Summing up the results in Table 1 and Table 2, we can draw the conclusion
that the macula related feature performs the best. It is able to provide high
sensitivity but relatively lower specificity. Other features combined are able to
keep the high sensitivity while increase the specificity.

4.3 Results on AMD detection

To test the performance of AMD detection, we compare our method with the BIF
[19] based method and the Thalia system [20]. The results of these two methods,
on the same dataset, are reported in their papers. To make the comparison fair
and objectively, in experiment, we adopt the same setting with the two methods,
meaning randomly choose 50 positive sample and negative samples as training
data and the left ones as test data. The experiments are run 10 times. The means
and standard deviations of sensitivity, specificity, the average precision, and AUC
are shown in Table 3. From the table, we can see that our method outperforms
the two methods on the task of AMD detection. It is worth to point out that
our approach achieves the high sensitivity of 100%, with the high specificity of
96.76. The standard deviation of our method is also the lowest.
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Table 3. Performance comparison on early AMD detection

sensitivity specificity
Average pre-
cision

AUC

BIF[19] 86.3± 3.2 91.9 ± 3.1 89.11±1.35 NA

Thalia[20] NA* NA 95.46±0.94 NA

Proposed 100±0 96.76±1.16 98.38±0.58 97.26±0.98

*NA means Not Available.

Figure 3 shows the top 10 images that are most likely to have AMD and the
10 images that are least likely to have AMD. All the 20 images are correctly
classified. From the result, we can see that the approach is robust to image
condition.

4.4 Results of drusen segmentation

Then we further evaluate the performance of drusen segmentation, by means of
sensitivity, specificity, and average precision. Since drusen classification, mean-
ing classifying the maximum points as drusen or not, is the basis of drusen
segmentation, we also show the results of drusen classification.

As our method is weakly supervised, we compare it with the corresponding
fully supervised method, meaning support vector machine using the manual
label as training data. The comparison result is shown in Table 4. Figure 4 and
5 show the drusen segmentation result of the SVM based method and the MIL
based method. Refer to Table 4, Figure 4 and Figure 5, we find that the weakly
supervised MIL gives lower sensitivity but higher specificity compared to the
fully supervised learning SVM.

Table 4. The performance of the proposed method

classification segmentation

sensitivity specificity
average pre-
cision

sensitivity specificity
average pre-
cision

SVM 90.23±0.60 87.08±0.28 88.66±0.32 67.77±0.51 94.36±0.12 81.07±0.24

MIL 50.59±6.93 90.89±3.37 70.74±2.11 40.54±6.26 96.17±1.44 67.85±2.48

5 Conclusion

In this paper, we propose an effective AMD screening approach. This approach
employs multiple instance learning to reduce the need for manual labelling train-



12 H. Liu, Y. Xu, D.W.K. Wong, and J. Liu

Fig. 3. Examples of AMD detection. The top two rows: the 10 images that are most
likely to have AMD. The bottom two rows: the 10 images that are least likely to have
AMD. The number below each image is the ranking number in the classification result.

ing data. As shown by the experimental results, on the task of AMD detection,
the proposed approach outperforms the state-of-the-art methods. On the task
of drusen segmentation, its performance is satisfying compared with the fully
supervised result. One important application of drusen segmentation is AMD
grading. In our future work, we will extend our approach to grade the severity
of AMD.
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Fig. 4. Examples of drusen segmentation. The image are the 1-5th in Figure 3. The
first column shows the drusen regions of the fundus images. The second and third
columns show the drusen segmentation results of the SVM based method and the MIL
based method. The green background is the green channel of the fundus image, the
regions in blue are the false negative. The regions in purple are the true positive and
the ones in orange are false positive.
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Fig. 5. Examples of drusen segmentation. The image are the 6-10th in Figure 3. The
first column shows the drusen regions of the fundus images. The second and third
columns show the drusen segmentation results of the SVM based method and the MIL
based method. The green background is the green channel of the fundus image, the
regions in blue are the false negative. The regions in purple are the true positive and
the ones in orange are false positive.
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